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Abstract: This research proposes the traffic prediction strategies that effectively would be able to find the fastest
route from the desirable destination given by a driver in traffic network. The key aspect of the proposed plan is to
consider both real-time and cumulative traffic information together to obtain more accurate future traffic informa-
tion. In location-based services, the traffic network is needed to solve certain constrains, such as turns problems
and provide method for avoiding traffic congestions. To guide a fastest route service in such a complicated net-
work, we first construct a linear dual graph from a traffic network. Then, we propose main algorithmic approaches
which are developed by Kalman Filter and cumulative traffic patterns to predict a much better quality of future
traffic information by combining real-time with cumulative traffic conditions. Finally, we adopt Dijkstra’s shortest
path algorithm to minimize the travel time with generating a fastest cost function. The proposed approach also has
an advantage that can provide service interoperability by adopting OpenLS standard route scheme. Experimental
results show that this approach is highly efficient in route plan than previously used ways by only cumulative
approaches. This approach is supposed to proceed convenience for drivers and develop a quality of navigation
service in telematics.
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Graph

1 Introduction
1.1 Motivation
Recently, location-based service(LBS) have been
increasingly providing a variety of services to our
real-life, along with developments in the areas of
location positioning, wireless communication and
automotive technologies. Also, LBS are considered
to be a highly essential technologies in telematics
services, which are heavily dependent on the vehi-
cle’s location information. In particular, navigation
service in LBS must be capable of facilitating driver’s
convenience and safety by providing more accurate
traffic information of near future in traffic network.
In addition, this service should continuously find and
notify all the current and future traffic conditions
to conduct a fastest route for drivers with avoiding
congested areas.

In traffic network, where the travel time changes
dynamically, the correctness of the fastest route plan

very much depends upon the correctness of the cost
model of the route. Typical route cost model based on
static information that, in general, is heavily weighted
by the only cumulative velocities. Unfortunately, as
many drivers in traffic areas are aware, this cost model
cannot entirely be appropriate for determining fastest
route, because real-time condition of routes such as
the severity of congestion should be play an important
role. For this reason, it is required to provide an
effective fastest route service of truly valuable future
traffic information reflecting on real-time traffic
conditions.

1.2 Related Works
The shortest paths problem in networks has been the
subject of extensive research for many years resulting
in the publication of a large number of scientific
papers[6]. The algorithm which always select the
candidate node with minimum distance label are



known as label-setting or as shortest-first search al-
gorithms. The first algorithm using this selection rule
was proposed by Dijkstra. There are many versions
of Dijkstra’s algorithm depending on data structures
for the candidate nodes. The algorithms which select
a candidate node by means of different strategies are
known as label-correcting or as list-search algorithms.

The analysis of traffic network is one of the many
application areas where the computation of shortest
paths is one of the most fundamental problems. The
route selection problem in traffic network involves
finding an optimal route from a starting point to a
destination on a road map[10]. Even those traffic
conditions, such as the distribution of congestion,
change during driving, the route should be reeval-
uated before the car reaches the next intersection.
Since no “best” algorithm exists for every kind of
transportation problem on traffic network, i.e. no
algorithm exists which shows the same practical
behavior independently of the structure of the graph,
of its size and of the cost measure used for evaluating
the paths, research in this field has recently moved
to the design and the implementation of “heuristic”
shortest path algorithm[1]. Much of the focus has
been on the choice and implementation of efficient
data structures[6]. There is one more interesting
related work by Chon et al.[3]. Chon et al. presents a
time-dependent shortest path algorithm that the trajec-
tory of moving objects are determined by monitoring
the real-time network conditions. In the study of Chon
et al., they show that the average travel time of moving
objects has been markedly reduced by considering
dynamically changing information of moving object
with variation of time.

In this paper, we do not attempt to solve or pro-
pose yet another variation of the shortest path
problems. The major contribution of this work is to
present a new route plan is that based on the traffic
prediction reflecting on dynamic changing of real-time
and patterns of cumulative traffic information.

1.3 Overview of Route Plan
Major procedure for our determination of fastest route
planning is as follows (see also Fig.1).

Step 1: Construction of a linear dual graph
Construct a linear dual graph DT [4][9] from
a given data of traffic network GT , which is
represented by schema of node and edge. DT is
a fundamental structure for determining fastest
route in our approach.

Step 2: Prediction of future traffic velocity
Predict the future traffic velocity VP (t+d), which
is evaluated by real-time velocity VR(t) and
cumulative traffic patterns VC(t−d) at time
t, where d denote an interval index of given
periods of time.

Step 3: Cost definition for fastest routing service
A cost function ω(ek) of each edge ek in DT

is formed by using VP (t+d) and traffic topology
TG.

Step 4: Performance of fastest route service
Dijkstra’s shortest method is performed to
guarantee the fastest route plan using ω(ek).
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Fig. 1: Overview of our proposed traffic prediction
system.



2 Route Plan using Linear Dual Graph
In most of traffic networks, the route planning for
car navigation or public transport should consider
no-left-turn, P-turn, U-Turn and other turn problems
to find a minimal travel time cost. In particular, in
urban environment, turning left is often forbidden in
order to minimize congestions and, when allowed,
traffic lights and counter flow cause an extra travel
cost itinerary between two nodes.

The common approaches to handle these prob-
lems are node expansion[8] and linear dual graph
method[4]. The node expansion approach builds
up the expanded network, Ge, which is obtained by
highlighting each movement in the intersections by
means of dummy nodes and edges, where the costs
of the dummy edges are the penalties. The major
disadvantage of this approach is that the resulting
network Ge is significantly larger than the original
graph G.

Generally, a directed graph G is consists of a set
of nodes N and a set of edges E connecting the nodes,
G(N, E). Given a graph G(N, E), the linear dual
graph D =L(G) has node set N(D) = E(G) and
edge set E(D) = {ab : a, b ∈ N(D), the head of a
coincides with the tail of b}. A linear dual graph D is
defined by the following definition (see also Fig.2)[8]:

Definition 1 The graph D(ND, ED) with sD, tD, wD

is called the linear dual graph of G(N,E) with
sG, tG, wG if:

• For each edge ei ∈ G there is a node vi ∈ D
with vi = d(ei) and d being bijective so that
d−1(vi) = ei. Thus, ND = d(EG).

• For each pair of consecutive edges (ei, ej) ∈ G
there is an edge ε ∈ D between the correspond-
ing nodes vi = d(ei), vj = d(ej), such that
s(ε) = vi and t(ε) = vj · ED =

⋃
i εi.

• There is a cost function wε : ED → R+, and a
cost function wv : ND → R+.

In determining the performance of the approaches,
it is useful to summarize their storage requirements.
The node expansion method requires δmax|NG| nodes
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Fig. 2: A digraph G and its linear dual graph D =L(G)

for the primal graph G since any node n expands into
δ(n) nodes (where, δmax denotes maximum degree
of node). This method also requires the number of
edges in G, |EG|, plus the number of path of length
2, δmax

2 |EG|[7]. The boundary node is a node which
has a single-source and single-target in G. The linear
dual graph (D) method requires the number of nodes
which |EG| adds to the number of boundary nodes in
G, |N ′

G|.

The storage requirement for the edges in D is
the number of edges which δmax

2 |EG| plus |N ′
G| (see

Table 1).

Method |N | |E|
Node δmax|NG| (1 + δmax

2 )|EG|
expansion (Ge)

Dual |EG|+ |N ′
G| δmax

2 |EG|+ 2|N ′
G|

graph (D)

Table 1: Estimation of upper limits for node expansion and
linear dual graph. (N ′

G denotes boundary nodes of a primal
graph G and δmax denotes maximum degree of node)

Based on these facts, we adopt the linear dual graph
technique as a conceptual model for our route specifi-
cation on GT .

3 Traffic Prediction
To predict VP (t+d), we measure not only VC(t−d)

simply, but through VR(t) and VC(t−d). If VR(t) is
similar to that of the of regular cases then, the result
of VP (t+d) will be obtained by the difference between
VR(t) and VC(t−d). Otherwise, we apply a method on
the basis of Kalman Filter for finding a practically
useful convergence by combining updates with VR(t)

and VC(t−d).



To find a minimal travel time cost, it is impor-
tant to properly calculate ω(ek) from DT . This ω(ek)
is determined with results of VC(t−d) and TG.

3.1 Real-Time Measurement and Correction
Method

To predict the accurate traffic condition, we first
measure VR(t) in GT . This measurement can be
possible by AVI(Automatic Vehicle Identification)
systems or the diffusion of car navigation devices.
In the results of these measurement, however, it
may contain missing edges in GT which were not
measured correctly. Two kinds of missing edges can
be measured according to the extent of these edges -
(a) one specific missing edge and (b) all missing edges
can be found in a specific region.

Under these cases, appropriate correction pro-
cesses are required to be done to obtain the more
suitable measurements. The correction of missing
edges are made by deriving the average velocity of
adjacent edges except edges which permit U-turn for
the case of (a). In the case of (b), VC(t) of all adjacent
edges in a specific region are treated as the correction
velocity, because all edges in this region are missing
edges. As already noted, VC(t) means the cumulative
traffic patterns, which represent a cumulative average
traffic velocity at current time (t).

Fig.3 shows an example of the case of (a) that
the correction process can be applied when a missing
edge obtained. Let v

−−−→
(a, b) be a velocity of two adja-

cent node from a toward b. It is seen from Fig.3 that
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Fig. 3: An example of a missing edge and its cor-
rection process.

the average velocity of those edges v
−−−→
(c, a), v

−−−→
(d, a),

v
−−−→
(b, f), v

−−−→
(b, e) is treated as correction velocity for

v
−−−→
(a, b).

3.2 Detection of Unexpected Situations
Particularly, it should be taken notice of that un-
expected situations(e.g., traffic congestion, road
construction, traffic accident) are found to accurately
provide these situations to drivers. To find out such
edges, a comparison method between VR(t) and VC(t)
was required.

Let VR(t)(ek) be VR(t) and VC(t)(ek) be VC(t),
where a connected edge ek in GT . Then, unexpected
situations for all ek can be detected by the following
expression,

| VR(t)(ek)− VC(t)(ek) | > δ , where

δ = α ∗
√∑n

d=1(VC(t)(ek)− VC(t−d)(ek))2

n

where δ is adjusting threshold which is believed as
boundary of unexpected traffic situations and constant
α represent average velocity deviation within a given
total periods of time n.

In this present work, there are two possible traf-
fic prediction models will be defined differently, in the
case of when these unexpected situations appeared or
not.

3.3 Traffic Prediction based on Cumulative
Traffic Patterns

In this section, we describe the method that predict
the future traffic condition, which is applied when a
deviation between VR(t) and VC(t) can be regarded as
permitable small.

Based on the facts that have been observed so
far, traffic patterns which were classified by the same
periods of days and times have been shown quite
similar aspect. Therefore, we attempt to define the
prediction velocity on each ek at prediction time
(t + d) as a future value by using the following
equation,

VP (t+d)(ek) = VR(t)(ek)± f(ek),where

f(ek) = β ∗
√∑m

d=0 (VR(t)(ek))2 − (VC(t−d)(ek))2

m

where β is average velocity deviation within a given
total period of time m. The result of this evaluation



turned out to be proceed smoothly and provide desired
prediction velocity.

3.4 Traffic Prediction based on Kalman Filter
In this section, we derive the Kalman filter as the
optimal velocity predictor in DT for a discrete
time-varying system. The Kalman filter estimates a
process by using a form of feedback control: the filter
estimates the process state at some time and then ob-
tains feedback in the form of (noisy) measurements[2].

The input to the system consists of a sequence
of unknown K-dimensional real-valued input column
vectors uj(j = 1, 2, ...). A sequence of hidden N -
dimensional real-valued state vectors xj(j = 1, 2, ...)
are meant to represent the internal dynamics of the
system. Input vector uj and state vector xj combine
linearly to produce the next state vector:

xj+1 = Ajxm + Bjuj

with a measurement z ∈ <M that is

zj = Hxj + vj

Aj is the N ×N state transition matrix at time j and
Bj is an N × K matrix that maps the input into the
state space.

In our research case, element values of matrix A
are velocity values of GT . The input vectors may also
be interpreted as state transition noise vectors. The
input vector can be decomposed as Bjuj + ωj , where
ωj is possible noise. We simply exploit initial matrix
A by initializing the VC(t). The matrix M ×N matrix
H in the measurement equation relates the state to
the measurement zj . In practice H might change
with each time step or measurement so we adopt the
average value of the cumulative velocities for each
road link. Fig.4 shows the prediction process by using
Kalman filter. The detailed prediction procedures are
beyond the scope of this paper. So, we will not cover
detail two steps of the Kalman filter.

4 Fastest Route Planning
The route service is a network-accessible service that
determines travel routes and navigation information
between two or more points. The OpenLS route de-
termination service is one of the OpenLS service spec-
ification for route service[5]. In this specification, the
route preferences are defined as follows:

Kalman Filter Processing

Cumulative Traffic Pattern

Prediction Traffic VelocityReal-Time Measurement

Predict Future Velocity

Fig. 4: The process of prediction by using Kalman
filter’s iterative solution.

(1) “Fastest” - Minimize the travel time
(2) “Shortest” - Minimize the travel distance
(3) “Easiest” - Minimize the driving difficulty
(4) “Pedestrian” - Best route by foot
(5) “PublicTransportation” - Best route by public
transportation.

In this work, we only describe “Fastest” prefer-
ence case. To provide this routing service, the weight
cost of between two adjacent nodes to be calculated.
The cost function was defined by using VP (t+d)(ek),
which indicates predication traffic velocity of (ek),
road classes ck and the number of traffic-lane m.

Thus, the cost function of (ek) can be expressed
by the following expression,

ω(ek) = ck · λ, where

λ =
1

VP (t+d)(ek) ·m, 0 < λ ≤ 1

After then, Dijkstra algorithm is conducted to search
fastest path on DT .

5 Experiment
In order to evaluate the accuracy of the proposed
approach, we performed a comparative analysis on
an actual traffic network, Kang-Nam area where
consists of about 10,000 nodes in Seoul, Korea. In
this experiment, accumulated data which include
cumulative traffic velocities were prepared for six
months. The three prediction method was evaluated
for comparative analysis as follows:

(1) Method A - by the only cumulative traffic data
(2) Method B - by the real-time and the cumulative traffic
data



(3) Method C - by the real-time and the cumulative traffic
data(with Kalman filtering)

To analyze the accuracy of these cases, the aver-
age deviation errors on all the edges are given by the
following expression,

ε(t) =
∑n

k=1 | VR(t)(ek)− VP (t)(ek) |
n

which denotes a average value of the difference
between the actual and the prediction velocity at time
t.

We measured a traffic network in every 5 min-
utes intervals during hours(08:00 ∼ 09:00) to obtain
a real-time velocities and predicted in every 5 min-
utes and the length of prediction time were 3 peak
hours(08:05 ∼ 11:05). The experimental results are
obtained through investigating for 4 weeks at the 95%
confidence interval. On the “Method C”, Kalman filter

AVERAGE DEVIATION OF ERROR ε(t): 5 KM
METHOD A : 85.3%
METHOD B : 86.2%
METHOD C : 89.2%

was applied when ε(t) > 10km and more accurate
results are obtained comparing with “Method A” and
“Method B” as can be seen the above results. Fig.5
shows the corresponding results of our experiments,
which illustrates the rates of edges(0 ∼ 25%) in the
average deviation of errors between the actual and the
prediction velocities(1km ∼ 20km).

As you can see in this graph, the rates for “Method
C” were always at higher level(about 12%, 23%, 17%)
than the others, “Method B”(about 8%, 23%, 12%) and
“Method A”(about 4%, 18%, 16%) between 1km to 3km,
during the lowest scope of errors, while nearly the
same for the rest of scope of errors(4km ∼ 20km).
These indicate that the rate of edges for “Method C”
gives us minimal deviation error between the actual
and prediction velocities and can provide higher
trustworthy prediction model than the two others,
“Method A” and “Method B”. Fig.8 shows a snapshot
from navigation device, providing traffic prediction
service that was proposed by our approach. The traffic
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Fig. 5: Comparison results of the three prediction method.

prediction service flow is that firstly, a user selects
traffic prediction service menu during the navigation
and then a user sets desirous future time for traffic
prediction service, finally, the user can preview the
result of predicted traffic information as texts or on
the map.
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Fig. 6: A snapshot of navigation device simulated
with our approach.

As previously stated, the goal of the proposed route
planning is minimizing the travel time of route
between the start and the destination position. In order
to present the effectiveness of our approach, we made
a comparative experiment which has the arbitrary
starting and destination position. The area for our
experiment in Fig.7 and Fig.8 is Kang-Nam district
which has the largest traffic volume in Seoul. The



route, the red colored arrow in the Fig.7, is obtained
from shortest route strategy having no regard for
the rush traffic hour. This route length is about 2.74
km and travel time is around 5 minute at ordinary
times, which is common and popular. However, the
travel time of this route will significantly increase
to nearly 30 minute during the rush hour, since this
route has heavy traffic congestion zone. Thus, we
had better to consider near future traffic by using the
proposed traffic prediction plan. The route which
is resulted from the proposed method is shown the
blue colored arrow in Fig. 8. The length and travel
time of this route, is approximately 4.06 km and 10
minute respectively. Although the length of this route
is longer than that of common route, travel time of
this route is shorter than that of common route during
the rush hour since we can avoid the heavy traffic
congestion zone.

Fig. 7: The common route without the considera-
tion of traffic congestion.

From these experimental results, we expect that our
proposed method could be efficient for future traf-
fic prediction and can be integrated with conventional
method.

6 Conclusion
In this paper, we propose a new route plan to guide
a fastest route from a given destination, which based
on future traffic prediction. The data structure of a
liner dual graph is the our primal structure which rep-
resents all pair of consecutive edges and allow indi-

Fig. 8: The fastest route with the consideration of
traffic congestion.

vidual weighting. We could minimize travel time cost
and solve the turn problem that may be occurred at
the intersection area with the graph. To predict the fu-
ture traffic condition, we first measured real-time traf-
fic condition for reflecting on dynamic changing of
current traffic flows. The traffic prediction model on
the basis of real-time and cumulative traffic patterns
was proposed to provide more realistic and accurate
traffic information to drivers. If the measured real-
time velocity was permitted within satisfiable thresh-
old, traffic prediction was determined by adopting the
cumulative traffic patterns. Otherwise, Kalman filter-
ing method was adopted in case of the traffic conges-
tion or unexpected circumstances. We finally com-
bined predicted traffic velocity and road topology for
generating reliable weight cost function, and Dijkstra’s
algorithm was applied to travel a fastest route. The re-
sults of our works are supposed to provide driver with
truly valuable traffic information of near future. Fur-
thermore, this work may also be extended to the fields
in the services of LBS solution and telematics.
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